Divisibility and Fermat's Last Theorem

Joseph L. Ramirez
Alumnus, California State University, Fresno, CA 93710, USA

Abstract: A proof of Fermat's Last Theorem follows on the heels of a proof of the divisibility of powers .
Keywords - Divisibility, Fermat's Last Theorem, Interdependence, Pythagorean Theorem.
Date of Submission: 26-01-2019
Date of acceptance: 09-02-2019

Fermat's Last Theorem

For positive integers a, b, and $c, a^{n}+b^{n}=c^{n}$ is valid only for positive integer values of n less than or equal to 2 .

The Pythagorean Theorem

For positive integers a, b, and $c, a^{2}+b^{2}=c^{2}$.

Divisibility

We say p divides q if there exists a number $\mathrm{k} \geq 1$ for which $\mathrm{q}=\mathrm{pk}$.

I. Introduction

Ever since Pierre De Fermat (1601-1665) wrote he had a "truly marvelous proof" of what is known as his "last" or "great" theorem", mathematicians have been searching for a simple proof.

We contribute a precise proof of Fermat's Last Theorem in two parts. The first part shows: $a^{2 n+1}+b^{2 n+1}=(a+b) c$ and $b^{2 n}-a^{2 n}=(a+b) c$

The second part of the proof shows that, for $\mathrm{n}>1$:
$a^{2 n-1}+b^{2 n-1} \neq c^{2 n-1}$ and $a^{2 n}+b^{2 n} \neq c^{2 n}$

II. The Notion Of Divisibility

We begin with the difference of squares. By the Pythagorean Theorem:
$a^{2}+c^{2}=b^{2} \Rightarrow c^{2}=b^{2}-a^{2}=(b+a)(b-a)$
It is clear $\mathrm{a}<\mathrm{b}$. We derive a key principle by observing then there exists a positive integer $\mathrm{k} \geq 1$ for which $\mathrm{b}=\mathrm{a}+\mathrm{k}$. Subsequently, $\mathrm{k}=\mathrm{b}-\mathrm{a}$, which allows us to write:
$b^{2}-a^{2}=(a+b) k$
Without going into great detail, $b^{2 n}-a^{2 n}=(a+b) c$ whenever $n=2^{m}$. Example:
$b^{8}-a^{8}=\left(b^{4}+a^{4}\right)\left(b^{4}-a^{4}\right)=\left(b^{4}+a^{4}\right)\left(b^{2}+a^{2}\right)\left(b^{2}-a^{2}\right)$
The important thing is $b^{6}-a^{6}=\left(b^{3}+a^{3}\right)\left(b^{3}-a^{3}\right)$ should not be divisible by $a+b$ since it does not reduce to the difference of squares. To our surprise, we find $b^{3}+a^{3}=(a+b) c$!

With further exploration comes the notion that divisibility is interdependent. Observe that:

$$
\begin{aligned}
& b^{2 n}-a^{2 n}=(a+b)\left[-a^{2 n-1}+b\left(b^{2 n-1}+a^{2 n-1}\right)(a+b)^{-1}\right] \\
& a^{2 n+1}+b^{2 n+1}=(a+b)\left[a^{2 n}+b\left(b^{2 n}-a^{2 n}\right)(a+b)^{-1}\right]
\end{aligned}
$$

In each case, the factor $(a+b)^{-1}$ signals dependency. As a simple model:
$3^{4}-2^{4}=5(13)=5[-8+3(7)]=5\left[-8+3(35) 5^{-1}\right] \Rightarrow 3^{4}-2^{4}=(2+3)\left[-2^{3}+3\left(3^{3}+2^{3}\right)(2+3)^{-1}\right]$
Armed with $\mathrm{b}=\mathrm{a}+\mathrm{k}$ and interdependence, we address our first goal.

III. Proof Of Divisibility

Proposition 1: $a^{2 n-1}+b^{2 n-1}=(a+b) c$
Proof by induction: Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{c}^{\prime}$, and k be positive integers. WLOG let $\mathrm{a}<\mathrm{b}$. Let S denote the solution set. $\mathrm{P}(1)$ is trivially true.

For $n=2: a^{2 n-1}+b^{2 n-1}=a^{3}+b^{3}$. Observe that:
$a^{3}+b^{3}=a a^{2}+b b^{2}+\left(b a^{2}-b a^{2}\right)$
$=a a^{2}+b a^{2}+b b^{2}-b a^{2}$
$=(a+b) a^{2}+b\left(b^{2}-\mathbf{a}^{2}\right)$
$=(a+b)\left[a^{2}+b(b-a)\right]=(a+b) c$
Assume $P(n)$ is true. This is to say $a^{2 n-1}+b^{2 n-1}=(a+b) c^{\prime}$ is true. Then:
$\mathrm{a}\left(\mathrm{a}^{2 \mathrm{n}-1}+\mathrm{b}^{2 \mathrm{n}-1}\right)+\mathrm{kb}{ }^{2 \mathrm{n}-1}=\mathrm{a}(\mathrm{a}+\mathrm{b}) \mathrm{c}^{\prime}+\mathrm{kb} \mathrm{b}^{2 \mathrm{n}-1}$
$\mathrm{a}^{2 \mathrm{n}}+(\mathbf{a}+\mathbf{k}) \mathrm{b}^{2 \mathrm{n}-1} \quad=\mathrm{a}(\mathrm{a}+\mathrm{b}) \mathrm{c}^{\prime}+\mathrm{kb} b^{2 \mathrm{n}-1}$
$a^{2 n}+b^{2 n} \quad=a(a+b) c^{\prime}+k b^{2 n-1}$
$\mathrm{a}\left(\mathrm{a}^{2 \mathrm{n}}+\mathrm{b}^{2 \mathrm{n}}\right)+\mathrm{kb}{ }^{2 \mathrm{n}} \quad=\mathrm{a}^{2}(\mathrm{a}+\mathrm{b}) \mathrm{c}^{\prime}+\mathrm{akb}^{2 \mathrm{n}-1}+\mathrm{kb}{ }^{2 \mathrm{n}}$
$a^{2 n+1}+b^{2 n+1} \quad=a^{2}(a+b) c^{\prime}+a k b^{2 n-1}+b k b^{2 n-1}$
$=a^{2}(a+b) c^{\prime}+(a+b) k b^{2 n-1}=(a+b)\left(a^{2} c^{\prime}+k b^{2 n-1}\right)$
$a^{2 n+1}+b^{2 n+1} \quad=(a+b) c$
$a^{2 n-1}+b^{2 n-1}=(a+b) c^{\prime}$ implies $a^{2(n+1)-1}+b^{2(n+1)-1}=a^{2 n+1}+b^{2 n+1}=(a+b) c$.
This shows $\mathrm{n} \in \mathrm{S} \Rightarrow \mathrm{n}+1 \in \mathrm{~S}$. Therefore, $1 \in \mathrm{~S}$ and $\mathrm{n} \in \mathrm{S} \Rightarrow \mathrm{n}+1 \in \mathrm{~S}$ implies the solution set S is equivalent to the set of positive integers. In other words:
$\forall \mathrm{n} \in \mathrm{Z}^{+}, \mathrm{a}^{2 \mathrm{n}-1}+\mathrm{b}^{2 \mathrm{n}-1}=(\mathrm{a}+\mathrm{b}) \mathrm{c}$
Proposition 2: $b^{2 n}-a^{2 n}=(a+b) c$
The proof of $b^{2 n}-a^{2 n}=(a+b) c$ is made by replacing $a^{2 n-1}+b^{2 n-1}$ with $b^{2 n}-a^{2 n}$: Observe that:
$a\left(b^{2 n}-a^{2 n}\right)+k b^{2 n}=b^{2 n+1}-a^{2 n+1} \Rightarrow a\left(b^{2 n+1}-a^{2 n+1}\right)+k b^{2 n}=b^{2(n+1)}-a^{2(n+1)}$
The right-hand side of the argument in Proposition 1is unchanged.

IV. A Simple Proof of Fermat's Last Theorem

The odd power case: We claim that $a^{2 n+1}+b^{2 n+1} \neq c^{2 n+1}$.
Proof: Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ and k be positive integers. BWOC, assume $\mathrm{a}^{2 \mathrm{n}+1}+\mathrm{b}^{2 \mathrm{n}+1}=\mathrm{c}^{2 \mathrm{n}+1}$.
By Proposition 1, $a^{2 n+1}+b^{2 n+1}=(a+b) d$. Then $c^{2 n+1}=(a+b) d$, which implies:
$c=(a+b) d\left(c^{2 n}\right)^{-1}$
Since c is a positive integer, $c^{2 n}$ divides $(a+b) d$ evenly. Clearly, $c^{2 n}$ does not divide $(a+b)$, thus:
$d=c^{2 n} k$
This means $(a+b) d\left(c^{2 n}\right)^{-1}=(a+b) k$. By substitution in figure (1):
$c=(a+b) k \Rightarrow c^{2 n+1}=(a k+b k)^{2 n+1}$
For the least case $\mathrm{k}=1$, the expansion of the binomial power yields:
$(a+b)^{2 n+1}=a^{2 n+1}+q_{2} b a^{2 n}+q_{3} b^{2} a^{2 n-1} \ldots+q_{2 n} a b^{2 n}+b^{2 n+1}$
Hence, $\mathrm{a}^{2 \mathrm{n}+}+\mathrm{b}^{2 \mathrm{n}+1} \leq(\mathrm{a}+\mathrm{b})^{2 \mathrm{n}+1}$
But $a^{2 n+}+b^{2 n+} \geq(a+b)^{2 n+1}$ is valid only if $a=0$ or $b=0$.
Since a and b were positive integers, $\mathrm{a}^{2 \mathrm{n}+1}+\mathrm{b}^{2 \mathrm{n}+1} \geq(\mathrm{a}+\mathrm{b})^{2 \mathrm{n}-1}$ is impossible.
We conclude $a^{2 n+1}+b^{2 n+1} \neq c^{2 n+1}$

The even power case

A similar argument applies. If we assume $a^{2 n}+c^{2 n}=b^{2 n}$ for $n>1$, then $c^{2 n}=b^{2 n}-a^{2 n}$. Hence, by Proposition 2, we arrive at the least case $c^{2 n}=(a+b)^{2 n}$ and the contradiction:
$a^{2 n}+(a+b)^{2 n}=b^{2 n}$
In all, for $n>1$, we have $a^{2 n-1}+b^{2 n-1} \neq c^{2 n-1}$ and $a^{2 n}+b^{2 n} \neq c^{2 n}$.

V. Conclusion

Because of the unique properties and characteristics of the divisibility of powers, the resulting proof of Fermat's Last Theorem seems fitting (like icing on a cake, so to speak).

References

[1]. Boyer, Carl B., A history of mathematics John Wiley \& Sons, Inc., New York, N.Y., 1989).

